V(5th Sm.)-Mathematics-H/DSE-B-1/CBCS

2021

MATHEMATICS — HONOURS

Paper : DSE-B-1

(Discrete Mathematics)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer the following multiple choice questions (MCQ) in which only one option is correct. Choose the correct option with proper justification if any. 2×10
 - (a) Consider the lattice $S = \{1, 2, 3, 4, 6, 12\}$, the divisors of 12 ordered by divisibility. The complement of 3 is

(i)	1	(ii)	12
(iii)	2	(iv)	4.

- (iii) 2
- (b) The number of unit element of the ring Z is
 - (i) 2 (ii) 1
 - (iii) 3 (iv) 0.
- (c) The multiplicative inverse of 7 in Z_{11} is
 - (i) 3 (ii) 8
 - (iii) 6 (iv) 2.
- (d) Let G be a connected graph with 10 vertices. If G is a tree, then the sum of the degrees of the vertices is
 - (i) 10 (ii) 18
 - (iv) 22. (iii) 20

(e) The maximum number of edges in a simple disconnected graph G with 10 vertices and 5 components is

- (i) 10 (ii) 15
- (iii) 25 (iv) 50.

(f) The maximum and minimum heights of a binary tree with 25 vertices are respectively

- (i) 13, 12 (ii) 15, 10
- (iii) 17, 4 (iv) 12, 4.

Please Turn Over

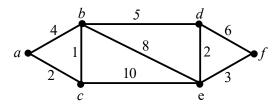
V(5th Sm.)- <i>N</i>	Mathematics-H/DSE-B-1/CBCS	(2)	
(g)	The remainder when 2×98! is d	ivided by 101 is	
	(i) 0	(ii)) 1
	(iii) 97	(iv)) 100.
(h)	A graph has 15 vertices and 20 to make it a tree is	edges. The least n	number of edges to be removed from the graph
	(i) 13	(ii)) 5
	(iii) 19	(iv)) 6.
(i)	What is $\sigma(180)$?		
	(i) 542	(ii)) 544
	(iii) 546	(iv)) 548.
(j)	Given any five points inside of a atmost	a square of side 2, t	then there exists two points within a distance of

(i)	1	(ii)	2
(iii)	$\sqrt{2}$	(iv)	$\frac{1}{\sqrt{2}}$

Unit-1

Answer any five questions.

- 2. A connected graph contains an open Eulerian trail if and only if it has exactly two vertices of odd degree. - Prove it. 5
- 3. If G is a connected planar graph with $n(\geq 3)$ vertices, e edges and no cycle of length 3, then prove that $e \leq 2n - 4$. Hence show that $K_{3,3}$ is non-planar. 3+2
- **4.** Using Dijkstra's algorithm, find the shortest path from the vertex *a* to *f* in the following graph. 5



- 5. Prove that the number of vertices in a binary tree is always odd. Find also the number of pendant vertices of a binary tree with n vertices. 2+3
- 5 6. Prove that for any graph G with n > 2 vertices must have two vertices of same degree.
- 7. (a) Give an example of a partially ordered set (L, \leq) which is a lattice.
 - (b) Prove that in a bounded distributive lattice (L, \vee, \wedge) if an element $a \in L$ has a complement, then it is unique. 2+3

8. Let $n \in \mathbb{N}$. Then prove that there exist two positive integers a and b such that $n^a - n^b$ is divisible by 10. 5 9. Find the number of edge disjoint Hamiltonian cycle in the complete graph K_{11} . 5 Unit-2 Answer any four questions. 10. Prove that both the functions Tau (τ) and Sigma (σ) are multiplicative functions. 5 11. If *p* be prime, then $(p-1)! \equiv -1 \pmod{p}$. 5 12. (a) For any two positive integers a and n with a > n, show that $n | \varphi(a^n - 1)$. (b) Find the sum of all positive integers which are less than 2022 and prime to 2022. 2+313. Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$. 5 14. A certain integer between 1 and 1000 leaves the remainder 1, 2, 6 when divided by 9, 11, 13 respectively. Find the integer with the help of chinese remainder theorem. 5 15. (a) Prove that for all integer n > 1, $n^4 + 4$ is composite. (b) If a is prime to b, prove that a + b is prime to ab. 2+3 16. (a) Define Fermat's number. Give example.

(b) Prove that product of the first *n* Fermat's number is $2^{2^n} - 1$, by the method of induction. 2+3

(3)